293 research outputs found

    Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements

    Get PDF
    SummaryWhen processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3–5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input

    Gravity compensation in complex plasmas by application of a temperature gradient

    Full text link
    Micron sized particles are suspended or even lifted up in a gas by thermophoresis. This allows the study of many processes occurring in strongly coupled complex plasmas at the kinetic level in a relatively stress-free environment. First results are presented. The technique is also of interest for technological applications.Comment: 4 pages, 4 figures, final version to be published in Phys. Rev. Let

    Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression

    Get PDF
    Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells

    Principles of meiotic chromosome assembly revealed in S. cerevisiae

    Get PDF
    During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Active Chromatin Marks Are Retained on X Chromosomes Lacking Gene or Repeat Silencing Despite XIST/Xist Expression in Somatic Cell Hybrids

    Get PDF
    X-chromosome inactivation occurs early in mammalian development and results in the inactive X chromosome acquiring numerous hallmarks of heterochromatin. While XIST is a key player in the inactivation process, the method of action of this ncRNA is yet to be determined.To assess which features of heterochromatin may be directly recruited by the expression and localization of the XIST RNA we have analyzed a mouse/human somatic cell hybrid in which expression of human and mouse XIST/Xist has been induced from the active X by demethylation. Such hybrids had previously been demonstrated to disconnect XIST/Xist expression from gene silencing and we confirm maintenance of X-linked gene expression, even close to the Xist locus, despite the localized expression of mouse Xist.Loss of the active chromatin marks H3 acetylation and H3 lysine 4 methylation was not observed upon XIST/Xist expression, nor was there a gain of DNA methylation; thus these marks of facultative heterochromatin are not solely dependent upon Xist expression. Cot-1 holes, regions of depleted RNA hybridization with a Cot-1 probe, were observed upon Xist expression; however, these were at reduced frequency and intensity in these somatic cells. Domains of human Cot-1 transcription were observed corresponding to the human chromosomes in the somatic cell hybrids. The Cot-1 domain of the X was not reduced with the expression of XIST, which fails to localize to the human X chromosome in a mouse somatic cell background. The human inactive X in a mouse/human hybrid cell also shows delocalized XIST expression and an ongoing Cot-1 domain, despite X-linked gene silencing. These results are consistent with recent reports separating Cot-1 silencing from genic silencing, but also demonstrate repetitive element expression from an otherwise silent X chromosome in these hybrid cells

    Overlapping Antisense Transcription in the Human Genome

    Get PDF
    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose

    Physical Passaging of Embryoid Bodies Generated from Human Pluripotent Stem Cells

    Get PDF
    Spherical three-dimensional cell aggregates called embryoid bodies (EBs), have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs) derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks) showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells

    m^6A RNA methylation promotes XIST-mediated transcriptional repression

    Get PDF
    The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N^6-methyladenosine (m^6A) residues—a reversible base modification of unknown function in long non-coding RNAs. We show that m^6A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m^6A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m^6A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m^6A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m^6A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m^6A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m^6A. These data reveal a pathway of m^6A formation and recognition required for XIST-mediated transcriptional repression

    Early Loss of Xist RNA Expression and Inactive X Chromosome Associated Chromatin Modification in Developing Primordial Germ Cells

    Get PDF
    The inactive X chromosome characteristic of female somatic lineages is reactivated during development of the female germ cell lineage. In mouse, analysis of protein products of X-linked genes and/or transgenes located on the X chromosome has indicated that reactivation occurs after primordial germ cells reach the genital ridges.We present evidence that the epigenetic reprogramming of the inactive X-chromosome is initiated earlier than was previously thought, around the time that primordial germ cells (PGCs) migrate through the hindgut. Specifically, we find that Xist RNA expression, the primary signal for establishment of chromosome silencing, is extinguished in migrating PGCs. This is accompanied by displacement of Polycomb-group repressor proteins Eed and Suz(12), and loss of the inactive X associated histone modification, methylation of histone H3 lysine 27.We conclude that X reactivation in primordial germ cells occurs progressively, initiated by extinction of Xist RNA around the time that germ cells migrate through the hindgut to the genital ridges. The events that we observe are reminiscent of X reactivation of the paternal X chromosome in inner cell mass cells of mouse pre-implantation embryos and suggest a unified model in which execution of the pluripotency program represses Xist RNA thereby triggering progressive reversal of epigenetic silencing of the X chromosome
    corecore